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Abstract-The retina’s visual message is transmitted to the brain 
by ganglion cells that integrate noisy synaptic inputs to create a 
spike train. We asked how efficiently the retinal ganglion cell 
spike generator creates the spike train message.  Intracellular 
and extracellular recordings were made from in vitro guinea pig 
retina, in response to a spot of light flashed over the receptive 
field center.  Responses were analyzed with an "ideal observer," 
a program that discriminated between two contrasts based on 
an optimal decision rule.  Spike trains from ganglion cells had 
thresholds as low as 1% contrast, but thresholds for the cor-
responding graded potentials were lower by a factor of 2.  Using 
a computational model of the ganglion cell, we asked what fac-
tors in the spike generator mechanism are responsible for the 
spike train’s loss in performance. The model included 
dendritic/axonal morphology, noisy synaptic inputs and mem-
brane channels.  Adaptation of spike rate was provided by 
K(Ca) channels which were activated by Ca2+ flux during 
spikes. When K(Ca) channels were included, they controlled the 
duration of the inter-spike interval and thus set the level of noise 
in the spike train.  These results imply that the spike generator 
adds noise to the spike train signal.

Keywords - Computational model, retina, spike generator, 
membrane channel, noise, ideal observer.

I. INTRODUCTION

Humans can detect a small stimulus at contrasts as low 
as 0.2% [1]. This visual message is transmitted to the brain by 
retinal ganglion cells, which integrate their synaptic inputs to 
create a spike train.  Precisely how the ganglion cell creates 
the spike train, and what code it utilizes are not known. The 
signal received by the ganglion cell from presynaptic circuits 
contains noise from several sources, which limit its sensitiv-
ity to contrast and reliability of timing. Different spike gen-
erator codes would give different proportions of signal and 
noise, which implies that the ganglion cell’s performance de-
pends on the particular code one assumes. Since a ganglion 
cell can simultaneously code for multiple features of a stimu-
lus, it is difficult to know which code is most essential. 

Ganglion cells sum signals from several dozen to several 
hundred synapses [2,3]. The noise from Poisson fluctuation of 
synaptic quanta would be expected to improve with larger 
numbers of synapses because the S/N ratio of Poisson distrib-
uted events improves as the square root of the mean.  How-
ever, the S/N ratio of ganglion cells has been measured and is 
relatively constant across variations in size [4].  This implies 
that all ganglion cells have a noise source in common. 

One potential source of noise shared by all ganglion cells 
is the spike generator itself.  Na+  channels are opened by a 
depolarization in a neuron’s membrane and this leads to re-
generative "spike" which is terminated by delayed opening of 
K+ channels.  The spike rate is controlled by other channel 
types that open during the inter-spike interval.  All of these 
membrane channels are known to be gated stochastically, 

which suggests they might add noise to the signal coded by 
the neuron.

To understand how the spike generator codes its signal, 
we asked how efficiently it creates the spike train message 
and which neural codes give the best performance.  We  ob-
tained performance with an experimental paradigm similar to 
psychophysical methods  that measure absolute behavioral 
sensitivity to a stimulus parameter, e.g. contrast. This allowed 
testing the performance of different codes and comparing per-
formance of graded potential with the spike train.  We then 
compared the empirical measurements of the ganglion cell’s 
performance with  those from a computational model of the 
ganglion cell spike generator.

II. METHODOLOGY

A. Physiology

Recordings were made from an in vitro guinea pig retina 
at 35οC, both intracellular and extracellular in response to a 
spot of light flashed over the receptive field center [5]. Light 
from a computer monitor was projected through the camera 
port of a microscope to the retina at an intensity equivalent to 
low photopic (daylight) [5].  Spot size and temporal fre-
quency were varied parametrically in initial tests for each 
neuron recorded to identify the optimal values.

B. Ideal observer analysis

Responses to both spike train and graded potential were gath-
ered from several contrasts for 200-400 trials, and these were 
analyzed in a two-alternative forced-choice paradigm similar 
to that used in behavioral tests on human subjects. Spikes 
were separated from the underlying graded potentials by a 
standard thresholding and interpolation algorithm. The data 
were analyzed with an "ideal observer", a computer program 
that discriminated between a pair of  contrasts based on an 
optimal decision rule [6]. Response data were binned accord-
ing to the particular code to be tested, and bin size was varied 
parametrically to find the optimum. Autocorrelograms of the 
graded potential typically gave an equivalent width of 10 
msec which was much shorter than the bin width (40-100 
ms.).  Four neural codes were implemented:  total spike count 
(1 bin), spike time (1 bin for each spike time),  spike pattern 
(typically 5-10 bins), and graded potential pattern. To dis-
criminate a pair of stimuli, a probability distribution function 
was constructed for each combination of bin and stimulus 
from half of the trials. Performance was tested with the other 
half of the trials on a trial-by-trial basis by comparing for 
each stimulus the bins’ joint probabilities (Fig 1). Threshold 
was defined as the contrast that produced 75% correct re-
sponses [6].
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    In Vitro Model

Fig 1. Comparison of performance for real cell and model. Left, in 
vitro ganglion cell, stimulus was photopic spot increment of light in 
receptive field center. Right, model, stimulus was voltage clamp in 
presynaptic terminal adjusted to give response amplitude similar to 
real spot. Top, typical responses to spot that flashed on at 0 and off at 
100 msec (left, 8% contrast, right stimulus to give similar response). 
Second row, average graded potential with spikes removed in re-
sponse to flashes of different contrasts.. Third row, average graded 
potential with spikes removed. Bottom, performance (proportion 
correct) of ideal observer. Performance for spike rate pattern crosses 
threshold (75% correct) at higher contrast than graded potential.
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Fig 2. Comparison of performance for differnt types of spike codes for a 
typical ganglion cell.  Spike count is total number of spikes in response inter-
val, spike pattern is numbers of spikes binned into 40 msec bins, spike laten-
cy is time to first spike. Spike count performs worst, spike pattern is slightly
better than latency code.

C. Simulations

A computational model was developed in the simulation lan-
guage Neuron-C [7] based on prior models in salamander and 
cat [8,9].  With this simulator we could perform a complete 
physiology experiment on a neural circuit, including optical 
stimulus, realistic morphology and biophysics, and voltage 
clamp recording [7,10].  The model included the ganglion 
cell’s dendritic and axonal morphology, 500 synaptic inputs, 
7 membrane channel types  (Na, Kdr, KA, L-type Ca, SK1, 
SK2, BK) and noise from synaptic inputs and membrane 
channels.  Channel kinetics were implemented in the simula-
tor with Markov diagrams taken from the literature for each 
channel type, adjusted for temperature with appropriate Q10 
values (for recordings and simulations, T=35oC). Synaptic in-
puts were driven to release at a low (~5/sec) quantal back-
ground rate and a higher rate during the stimulus. Synaptic 
noise was implemented by setting quantal release with a 
gamma interval distribution function modulated by an expo-
nential function of voltage. Channel noise was implemented 

by setting the Markov transition rates to binomial functions of 
the channel populations in each state. We calibrated the 
model by adjusting channel kinetics and densities to give 
similar spike shapes and firing rates to empirical recordings.

III. RESULTS

A. Ganglion cell recordings

Spike trains from ganglion cells had thresholds for 
flashed spots as low as 1% contrast. However, thresholds for 
the corresponding graded potentials were lower by about a 
factor of 2 (Fig 1).  For near-threshold stimuli, noise was rela-
tively constant, but the S/N ratio for the graded potentials was 
greater than for spikes.  This implies that the spike generator 
contains an additional noise source not present in the graded 
potential.

  Of the 3 spike codes,  spike count performed the lowest,  
spike time performed typically 30% better, and spike pattern 
had the best performance (50% better than spike count) (Fig 
2). For the spike count code, noise in the tail end of the re-
sponse period, when summed in one bin with the main re-
sponse tended to reduce performance. The reason for the 
higher performance of the pattern code was that the ideal ob-
server could weight each bin differently because the response 
waveshape gave each bin different S/N ratios.  When the bin 
size was shorter than the 100 msec stimulus duration, noise 
appearing later in the response was summed in separate bins 
and automatically given lower weight by the joint probability, 
thus preserving performance. Bin sizes shorter than 25 msec 
were less accurate for several reasons so most data sets were 
analyzed with a 40 ms. bin size. 

 B. Computational model

We calibrated the model to give spiking properties simi-
lar to live recordings, and then asked what channel types were 
responsible for the additional variability in the spike train. 
When K(Ca) channels were omitted, there was no 



Fig 3. Simulation of spike generator with 40 pA (left) and 80 pA 
(right) of current injected into soma. Top, model without noise KCa
channels provide spike accomodation with sharply falling spike 
rate after first few spikes. Bottom, spike generator model with all
noise sources included. Variability in spike rate originates mostly 
in K+ channels open during inter-spike interval.

accomodation of spike rate and noise originated mostly in Na 
and Kdr channels. Spike rate accommodation was provided 
by K(Ca) channels which were activated by Ca2+ flux during 
spikes. When the density of K(Ca) channels was set to the 
level necessary to provide ~50% spike rate accommodation, 
they controlled the duration of the inter-spike interval and 
thus set the level of noise in the spike train (Fig 3). 

IV. DISCUSSION

Our result that contrast threshold for the graded potential is 
about 50% of the threshold for the best-performing spike 
code implies that the ganglion cell at threshold transmits in its 
spike train only 50% of the information it receives from the 
presynaptic circuit [6]. Our simulation result that the spike 
generator adds variability to the signal it codes into a spike 
train suggests that the ganglion cell’s contrast threshold is de-
termined to a great extent by its intrinsic variability. This is 

surprising in comparison to engineered devices such as radio 
receivers where noise in the first stage sets the S/N ratio for 
all successive stages. Since a different spike generator 
mechanism could conceivably produce less variability, it is 
interesting to speculate that the ganglion cell adds noise to 
gain some information processing advantage in a compromise 
with the fineness of detail it can transmit.

V. CONCLUSION

The ganglion cell is responsible for transmitting subtle 
changes in contrast in the visual signal transmitted to the 
brain. We show with ideal observer analysis that about half of 
the information about contrast from a flashed spot is lost in 
the ganglion cell by the spike generator, and that the level of 
performance of the spike train depends on the particular code 
tested. We further show with a compartmental model of the 
spike generator that noise from stochastic gating of mem-
brane channels active during the inter-spike interval add con-
siderably to the variability observed in the spike train. 
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